TA的每日心情 | 开心 2016-3-19 06:18 |
---|
签到天数: 18 天 [LV.4]偶尔看看III
|
Limit Theorems for Multi-Indexed Sums of Random Variables (Probability Theory and Stochastic Modelling) – October 14, 2014
by Oleg Klesov (Author)
高清版本pdf 回复可见
Presenting the first unified treatment of limit theorems for multiple sums of independent random variables, this volume fills an important gap in the field. Several new results are introduced, even in the classical setting, as well as some new approaches that are simpler than those already established in the literature. In particular, new proofs of the strong law of large numbers and the Hajek-Renyi inequality are detailed. Applications of the described theory include Gibbs fields, spin glasses, polymer models, image analysis and random shapes.
Limit theorems form the backbone of probability theory and statistical theory alike. The theory of multiple sums of random variables is a direct generalization of the classical study of limit theorems, whose importance and wide application in science is unquestionable. However, to date, the subject of multiple sums has only been treated in journals.
The results described in this book will be of interest to advanced undergraduates, graduate students and researchers who work on limit theorems in probability theory, the statistical analysis of random fields, as well as in the field of random sets or stochastic geometry. The central topic is also important for statistical theory, developing statistical inferences for random fields, and also has applications to the sciences, including physics and chemistry.
Series: Probability Theory and Stochastic Modelling (Book 71)
Hardcover: 483 pages
Publisher: Springer; 2014 edition (October 14, 2014)
Language: English
ISBN-10: 3662443872
ISBN-13: 978-3662443873
From the Back Cover
Presenting the first unified treatment of limit theorems for multiple sums of independent random variables, this volume fills an important gap in the field. Several new results are introduced, even in the classical setting, as well as some new approaches that are simpler than those already established in the literature. In particular, new proofs of the strong law of large numbers and the Hajek-Renyi inequality are detailed. Applications of the described theory include Gibbs fields, spin glasses, polymer models, image analysis and random shapes.
Limit theorems form the backbone of probability theory and statistical theory alike. The theory of multiple sums of random variables is a direct generalization of the classical study of limit theorems, whose importance and wide application in science is unquestionable. However, to date, the subject of multiple sums has only been treated in journals.
The results described in this book will be of interest to advanced undergraduates, graduate students and researchers who work on limit theorems in probability theory, the statistical analysis of random fields, as well as in the field of random sets or stochastic geometry. The central topic is also important for statistical theory, developing statistical inferences for random fields, and also has applications to the sciences, including physics and chemistry.
About the Author
Oleg Klesov graduated from Kiev Shevchenko University in 1977 and obtained his PhD in 1979, followed by his habilitation in 2001. He is currently Professor at the National Technical University of Ukraine “Kyiv Polytechnic Institute”. During his academic career, he has held several positions as Invited Professor at Lublin (Poland), Debrecen (Hungary), Marburg, Koeln, Paderborn (Germany), Gainesville (USA), Cergy Pontoise (France), and Lakehead (Canada). His main scientific interests are in probability theory, stochastic processes and real analysis.
|
|